Termination w.r.t. Q of the following Term Rewriting System could not be shown:
Q restricted rewrite system:
The TRS R consists of the following rules:
app2(app2(*, x), app2(app2(+, y), z)) -> app2(app2(+, app2(app2(*, x), y)), app2(app2(*, x), z))
app2(app2(*, app2(app2(+, y), z)), x) -> app2(app2(+, app2(app2(*, x), y)), app2(app2(*, x), z))
app2(app2(*, app2(app2(*, x), y)), z) -> app2(app2(*, x), app2(app2(*, y), z))
app2(app2(+, app2(app2(+, x), y)), z) -> app2(app2(+, x), app2(app2(+, y), z))
Q is empty.
↳ QTRS
↳ DependencyPairsProof
Q restricted rewrite system:
The TRS R consists of the following rules:
app2(app2(*, x), app2(app2(+, y), z)) -> app2(app2(+, app2(app2(*, x), y)), app2(app2(*, x), z))
app2(app2(*, app2(app2(+, y), z)), x) -> app2(app2(+, app2(app2(*, x), y)), app2(app2(*, x), z))
app2(app2(*, app2(app2(*, x), y)), z) -> app2(app2(*, x), app2(app2(*, y), z))
app2(app2(+, app2(app2(+, x), y)), z) -> app2(app2(+, x), app2(app2(+, y), z))
Q is empty.
Q DP problem:
The TRS P consists of the following rules:
APP2(app2(+, app2(app2(+, x), y)), z) -> APP2(+, y)
APP2(app2(+, app2(app2(+, x), y)), z) -> APP2(app2(+, x), app2(app2(+, y), z))
APP2(app2(*, app2(app2(*, x), y)), z) -> APP2(*, y)
APP2(app2(*, app2(app2(+, y), z)), x) -> APP2(app2(*, x), z)
APP2(app2(*, app2(app2(+, y), z)), x) -> APP2(app2(+, app2(app2(*, x), y)), app2(app2(*, x), z))
APP2(app2(*, x), app2(app2(+, y), z)) -> APP2(app2(*, x), z)
APP2(app2(*, x), app2(app2(+, y), z)) -> APP2(app2(+, app2(app2(*, x), y)), app2(app2(*, x), z))
APP2(app2(*, app2(app2(+, y), z)), x) -> APP2(+, app2(app2(*, x), y))
APP2(app2(*, app2(app2(*, x), y)), z) -> APP2(app2(*, y), z)
APP2(app2(*, x), app2(app2(+, y), z)) -> APP2(+, app2(app2(*, x), y))
APP2(app2(+, app2(app2(+, x), y)), z) -> APP2(app2(+, y), z)
APP2(app2(*, app2(app2(+, y), z)), x) -> APP2(*, x)
APP2(app2(*, app2(app2(+, y), z)), x) -> APP2(app2(*, x), y)
APP2(app2(*, x), app2(app2(+, y), z)) -> APP2(app2(*, x), y)
APP2(app2(*, app2(app2(*, x), y)), z) -> APP2(app2(*, x), app2(app2(*, y), z))
The TRS R consists of the following rules:
app2(app2(*, x), app2(app2(+, y), z)) -> app2(app2(+, app2(app2(*, x), y)), app2(app2(*, x), z))
app2(app2(*, app2(app2(+, y), z)), x) -> app2(app2(+, app2(app2(*, x), y)), app2(app2(*, x), z))
app2(app2(*, app2(app2(*, x), y)), z) -> app2(app2(*, x), app2(app2(*, y), z))
app2(app2(+, app2(app2(+, x), y)), z) -> app2(app2(+, x), app2(app2(+, y), z))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
Q DP problem:
The TRS P consists of the following rules:
APP2(app2(+, app2(app2(+, x), y)), z) -> APP2(+, y)
APP2(app2(+, app2(app2(+, x), y)), z) -> APP2(app2(+, x), app2(app2(+, y), z))
APP2(app2(*, app2(app2(*, x), y)), z) -> APP2(*, y)
APP2(app2(*, app2(app2(+, y), z)), x) -> APP2(app2(*, x), z)
APP2(app2(*, app2(app2(+, y), z)), x) -> APP2(app2(+, app2(app2(*, x), y)), app2(app2(*, x), z))
APP2(app2(*, x), app2(app2(+, y), z)) -> APP2(app2(*, x), z)
APP2(app2(*, x), app2(app2(+, y), z)) -> APP2(app2(+, app2(app2(*, x), y)), app2(app2(*, x), z))
APP2(app2(*, app2(app2(+, y), z)), x) -> APP2(+, app2(app2(*, x), y))
APP2(app2(*, app2(app2(*, x), y)), z) -> APP2(app2(*, y), z)
APP2(app2(*, x), app2(app2(+, y), z)) -> APP2(+, app2(app2(*, x), y))
APP2(app2(+, app2(app2(+, x), y)), z) -> APP2(app2(+, y), z)
APP2(app2(*, app2(app2(+, y), z)), x) -> APP2(*, x)
APP2(app2(*, app2(app2(+, y), z)), x) -> APP2(app2(*, x), y)
APP2(app2(*, x), app2(app2(+, y), z)) -> APP2(app2(*, x), y)
APP2(app2(*, app2(app2(*, x), y)), z) -> APP2(app2(*, x), app2(app2(*, y), z))
The TRS R consists of the following rules:
app2(app2(*, x), app2(app2(+, y), z)) -> app2(app2(+, app2(app2(*, x), y)), app2(app2(*, x), z))
app2(app2(*, app2(app2(+, y), z)), x) -> app2(app2(+, app2(app2(*, x), y)), app2(app2(*, x), z))
app2(app2(*, app2(app2(*, x), y)), z) -> app2(app2(*, x), app2(app2(*, y), z))
app2(app2(+, app2(app2(+, x), y)), z) -> app2(app2(+, x), app2(app2(+, y), z))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph contains 2 SCCs with 7 less nodes.
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDPAfsSolverProof
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
APP2(app2(+, app2(app2(+, x), y)), z) -> APP2(app2(+, x), app2(app2(+, y), z))
APP2(app2(+, app2(app2(+, x), y)), z) -> APP2(app2(+, y), z)
The TRS R consists of the following rules:
app2(app2(*, x), app2(app2(+, y), z)) -> app2(app2(+, app2(app2(*, x), y)), app2(app2(*, x), z))
app2(app2(*, app2(app2(+, y), z)), x) -> app2(app2(+, app2(app2(*, x), y)), app2(app2(*, x), z))
app2(app2(*, app2(app2(*, x), y)), z) -> app2(app2(*, x), app2(app2(*, y), z))
app2(app2(+, app2(app2(+, x), y)), z) -> app2(app2(+, x), app2(app2(+, y), z))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using an argument filtering and a montonic ordering, at least one Dependency Pair of this SCC can be strictly oriented.
APP2(app2(+, app2(app2(+, x), y)), z) -> APP2(app2(+, x), app2(app2(+, y), z))
APP2(app2(+, app2(app2(+, x), y)), z) -> APP2(app2(+, y), z)
Used argument filtering: APP2(x1, x2) = x1
app2(x1, x2) = app2(x1, x2)
+ = +
Used ordering: Quasi Precedence:
trivial
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDPAfsSolverProof
↳ QDP
↳ PisEmptyProof
↳ QDP
Q DP problem:
P is empty.
The TRS R consists of the following rules:
app2(app2(*, x), app2(app2(+, y), z)) -> app2(app2(+, app2(app2(*, x), y)), app2(app2(*, x), z))
app2(app2(*, app2(app2(+, y), z)), x) -> app2(app2(+, app2(app2(*, x), y)), app2(app2(*, x), z))
app2(app2(*, app2(app2(*, x), y)), z) -> app2(app2(*, x), app2(app2(*, y), z))
app2(app2(+, app2(app2(+, x), y)), z) -> app2(app2(+, x), app2(app2(+, y), z))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
APP2(app2(*, app2(app2(+, y), z)), x) -> APP2(app2(*, x), z)
APP2(app2(*, app2(app2(+, y), z)), x) -> APP2(app2(*, x), y)
APP2(app2(*, x), app2(app2(+, y), z)) -> APP2(app2(*, x), z)
APP2(app2(*, x), app2(app2(+, y), z)) -> APP2(app2(*, x), y)
APP2(app2(*, app2(app2(*, x), y)), z) -> APP2(app2(*, y), z)
APP2(app2(*, app2(app2(*, x), y)), z) -> APP2(app2(*, x), app2(app2(*, y), z))
The TRS R consists of the following rules:
app2(app2(*, x), app2(app2(+, y), z)) -> app2(app2(+, app2(app2(*, x), y)), app2(app2(*, x), z))
app2(app2(*, app2(app2(+, y), z)), x) -> app2(app2(+, app2(app2(*, x), y)), app2(app2(*, x), z))
app2(app2(*, app2(app2(*, x), y)), z) -> app2(app2(*, x), app2(app2(*, y), z))
app2(app2(+, app2(app2(+, x), y)), z) -> app2(app2(+, x), app2(app2(+, y), z))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.